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Abstract—Due to the benefits of small latency, low energy
consumption and increased data rate, device-to-device (D2D)
communication is recognized as one of the promising techniques
in the 5G era. However, the distributed nature of D2D commu-
nication makes it non-trivial to generate symmetric keys for the
involving parties. Many efforts have been devoted to dynamically
generate cryptographic keys for D2D communication in mobile
network. However, most of them have limited applicability to
practical scenarios due to low key generation efficiency or limited
compatibility with commercial mobile devices. In this paper, we
design an ambient light based key generation approach, which
works on commercial off-the-shelf mobile devices, and achieves
high key generation efficiency. We observe that mobile devices
(e.g., smartphones, tablets) are often equipped with ambient
light sensors and devices sense different light intensities at
different angles towards the light source. We conduct a set of
measurement study, and the results show that the light sensor
data have several nice properties, i.e., space-varying, sensitive
to the angle of measuring device, and time varying. These
properties demonstrate that the ambient light is a good medium
for secret key generation. We implement a prototype on different
mobile devices, and conduct extensive experiments to evaluate its
performance. The experiment results show that compared with
the state-of-the-art key generation methods, our approach has a
superior performance in key generation efficiency and robustness.

Index Terms—Key generation, ambient light sensing, Device-
to-Device communication.

I. INTRODUCTION

DEVICE-TO-DEVICE (D2D) communication reforms the
traditional communication paradigm of cellular networks

[1]–[3]. It enables two mobile users communicate directly
without the assistance of Base Stations (BSs) or core network.
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Due to the close proximity and potentially favorable channel
conditions, D2D communications outperform on throughput,
delay, and energy efficiency, making the communication more
effective. Thanks to its efficiency, D2D communication sup-
ports both high data rate services (e.g., image/file transfer) and
latency sensitive services (e.g., video sharing, gaming) [1],
[4]. But many mobile users are deeply concerned about the
privacy leakage of their information during the transmission
[5]–[7]. In D2D applications, a significant amount of sensitive
and private information, i.e., bank accounts, passwords, health
conditions, etc., are transmitted through the untrusted public
wireless channels, which can be eavesdropped by the attackers,
who are interested in such sensitive information contents.

To secure the communication in mobile network, an intuitive
solution is to encrypt the transmitted information. Encryp-
tion makes the transmitted information incomprehensible to
attackers. D2D communication is usually ad-hoc, where is no
preexisted and trusted management for secret key generation
and distribution [8]–[10]. The traditional key exchange proto-
cols, e.g., Diffie-Hellman (DH) protocol [11], rely upon the
computational hardness of assumption, and its vulnerabilities
have been identified in [12].

Considering the privacy and security of D2D communica-
tions, it is a necessity to generate secret keys for the parties
involved in D2D communication. Most existing efforts exploit
the inherent randomness shared by the mobile entities to
extract the secret key. More specifically, they put mobile
devices into physical proximity and use common environment
characteristics as proof identities or common secrets for gener-
ating the secret key [9], [10], [13]–[17]. For example, Hershey
et al. first proposed the method of bit generation for secret
key sharing in [13]. Since then various channel measurements
for key generation have emerged, including one-dimensional
measurements, e.g., Angle of Arrival (AOA) [14] and Received
Signal Strength (RSS) [10], [18], [19]; multi-dimensional mea-
surements, e.g., Channel State Information (CSI) and Channel
Impulse Response (CIR) [20]–[23].

However, previous efforts have limited applicability to
practical scenarios due to low key generation rate, limited
compatibility with commercial mobile devices, or the re-
quirement of using the same type of mobile devices. For
example, radio-telepathy generates secret key from the CIR
of wireless channel, from which we can only get about
one secret bit per second [9]. ProxiMate generates less than
five bits per second in most scenarios [8]. Although some
wireless channel measurement based key generation methods
have high key generation efficiency [22], [23], they need the
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channel measurements provided by specialized hardware, e.g.,
they use CSI tool with the support of a special wireless
interface card (i.e., Intel WiFi Link 5300, or Atheros AR 9380)
[24]. However, in order to reduce the energy consumption,
most of mobile devices do not provide the API for detailed
channel measurement. FREE can achieve high key generation
efficiency, but it requires the users to use the same type of
mobile devices [25].

To address these deficiencies, we seek a key generation
method that can achieve high key generation efficiency and is
compatible with commercial off-the-shelf mobile devices. In
this work, we propose to use ambient light, as our medium, to
generate the secret key. Our study is motivated by two observa-
tions. First, the commodity mobile devices, e.g., smartphones,
are often equipped with light sensors to sense the ambient
light and adjust the brightness of the screen, saving the battery
life. Second, measurement results show that light sensor data
have several nice properties, i.e., space-varying, sensitive to
the angle of measuring device (mobile devices sense different
light intensities at different angles towards the light source),
and time-varying. These properties demonstrate that ambient
light is a good medium for secret key generation.

Although the idea sounds straight-forward, there are two
challenges when generating secret keys from ambient light
sensor data. The first is how to enable a group of mobile
devices to sense as similar light intensity as possible, as light
sensor data are the random sources for the key generation. The
second is how to acquire an identical secret key from their
similar light sensor data. For the first challenge, we move
and rotate the group of mobile devices together along the
same trajectory so that all of them have the same continuously
changing angles to the light sources to ensure that their light
sensor data have high similarity. For the second challenge,
we propose a novel quantization method to quantize the
light sensor data into bit streams and then reconciliate the
mismatched bits in the bit streams to make them identical so
that the group of mobile devices can finally generate the same
secret key.

To achieve this idea, we design a key generation approach,
named AKEM. AKEM contains two stages. In the first stage,
we put different mobile devices in proximity and move them
together along the same trajectory. In the second stage, their
sensed light data are quantized into bit streams and reconcil-
iated to solve their mismatched bits to generate identical bit
sequences. To eliminate the possible privacy leakage caused
by the reconciliation, we conduct privacy amplification on the
bit sequence to acquire the final secret key.

To evaluate the performance of AKEM, we implement its
prototype on different commodity mobile devices, and con-
duct extensive experiments in different scenarios. Experiment
results demonstrate that AKEM improves the key generation
rate greatly and achieves satisfactory robustness.

The main contributions of this work are summarized as
follows.
• We propose to use ambient light sensor data to generate

secret key. We conduct a variety of measurements and
validate the properties of ambient light sensor data, i.e.,
space-varying, sensitive to the angle of measuring, and
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Fig. 1. System model. Alice, Bob, and Calvin are located together in physical
proximity. All of them want to secure their exchanged information transmitted
through public wireless channel. Then, their mobile devices are moved and
rotated together along the same trajectory to sense the ambient light. The
sensed light data provide them the randomness for generating the common
cryptographic key, which constructs secure channels among them. A passive
adversary Eve cannot sense the similar light data for generating the same key,
due to out of the proximity of legitimate users and unreplicated light sensor
data.

time-varying, which all demonstrate that ambient light is
an appropriate medium for key generation.

• We propose AKEM, where users move and rotate the mo-
bile devices together to get similar light measurements.
In order to reduce the quantization error and improve
key generation efficiency, we present a novel quantization
method to adapt to the light sensor data which have great
different ranges in indoor and outdoor environments.

• We implement our design on different mobile devices.
Evaluation results show that AKEM can generate 260
secret bits in a second, which is higher than existing key
generation methods.

The rest of the paper is organized as follow. Section II
presents the system model and attack model. Section III
introduces the background of ambient light and analyzes
the feasibility of using sensed light data for key generation.
Section IV gives the design details of AKEM. Section V
analyzes the security of AKEM. Section VI evaluates the
performance of AKEM. Section VII discusses the practical
application of AKEM. Section VIII briefly reviews the related
work. Section IX concludes this paper.

II. SYSTEM AND ATTACK MODEL

In this section, we present our system and attack model.
We first illustrate the system model, which is shown in Fig.

1. There are three legitimate users, named Alice, Bob, and
Calvin, and a passive adversary, Eve. The legitimate users have
no prior shared secret. To prevent Eve from eavesdropping
their private communication, these legitimate users need to
protect their transmissions by cryptographic keys. The legiti-
mate users are equipped with off-the-shelf mobile devices, e.g.,
smartphones, tablets. The maximum distance between any two
of legitimate users is within L, as shown in Fig. 1. Eve is out
of the proximity of legitimate users, and he is equipped with
a mobile device, which also can sense the ambient light.

Our goal is to utilize the similar ambient light sensor
data to generate secret key among legitimate users while
achieving significantly higher key generation rate and lower
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bit mismatched ratio, resisting the passive attacks from the
adversary Eve. We assume that the legitimate users are willing
to make some efforts (e.g., rotating the mobile devices) to
achieve this goal.

Next, we analyze several possible attacks from the adver-
sary, Eve. Eve can eavesdrop all signals transmitted wirelessly
by legitimate users. Eve is also able to sense the ambient light
and has the same computational capability as the legitimate
users. He tries his best to guess the key generated by legitimate
users. We assume that Eve cares about the exchanged informa-
tion and thus he is interested cracking the encryption among
the legitimate users. Hence, he has no intention to jam the
wireless channels or hinder the key generation process among
legitimate users. Based on these assumptions, we mainly
consider the following three possible passive attacks from Eve:
• Eavesdropping: Eve can overhear all messages transmit-

ted through the public wireless channel among legitimate
users. Then, Eve can analyze these eavesdropped mes-
sages and try to guess the generated cryptographic key.

• Detecting-simultaneously: We suppose that Eve knows
the method of key generation and the settings of parame-
ters. Then, he can generate secret key from ambient light
measurements by performing the same operations as the
legitimate users. The main limitation for Eve is that he
cannot get too close to the legitimate users. His distance
to any legitimate user is larger than L.

• Repeating-afterwards: When these legitimate users finish
all key generation operations and leave the original lo-
cation, Eve can come to this location and imitate their
operations to sense the ambient light for generating the
secret key.

III. PRELIMINARIES

In this section, we introduce the background knowledge of
ambient light, and study the feasibility of using light sensor
data for key generation.

A. Ambient light and light sensor

Light is everywhere. The importance of the light to human
is just like the air to human. People live in the light, and
use the light for illumination, energy resource, communication,
etc. In our daily life, there are many light sources, including
natural light sources and artificial light sources. The natural
light sources include sun, moon, lightning, which are changing
over time. Artificial light sources include various fluorescent
lamps, LEDs, which are relatively stable.

Both ambient light indoor and outdoor can be affected by
different light sources and changing shadowing. For indoor
environment, such as laboratory, the ambient light intensity
at a certain location is affected by many factors, i.e., the
number of fluorescent lamps and LEDs, daylight, the distance
to light sources, shadowing of different kinds of furniture,
moving people, and other objects, etc. When the light sources
change, the ambient light sensed at the same location changes
subsequently. For more dynamic indoor environment, e.g., a
busy shopping mall, where exist more artificial light sources
and changing shadowing (i.e., moving people). The light

intensity changes more rapidly. Ambient light in outdoor open
space is mainly affected by natural light sources. However,
in a crowded place, like a busy playground, where exists
many infrastructures, fluorescent lamps, trees, and visitors, the
ambient light intensity sensed at a certain location also changes
rapidly due to the changing distribution of light sources and
shadowing.

Mobile devices are always equipped with ambient light
sensors, and use them to sense the ambient light intensity to
adjust the brightness of the screen so as to save the battery
life.

B. Feasibility study

We study the feasibility of using ambient light sensor data
for key generation through extensive measurements.

1) Space-varying: As we mentioned above, changing light
sources and shadowing can affect the light intensity, which
brings the space-varying property of ambient light. We have
conducted extensive measurements to study the light intensity
distribution in both indoor and outdoor environments. For
indoor environment, we measured the ambient light intensity
distribution of a 10×14 m2 laboratory area using 10 Nexus
7 tablets, which are equipped with ambient light sensors. We
took one of the corners as the origin of the coordinates, and
measured the light intensity every 10 cm along the horizontal
and vertical coordinates. There are some shadowing sources
such as furniture, appliances, moving staffs, etc., in this room.
As shown in Fig. 2(a), the indoor light intensity distribution is
non-uniform, which illustrates the property of space-varying.

To measure the effect of space-varying, we compared the
light intensities sensed in different locations. We put two
legitimate smartphones (Alice and Bob) in adjacent positions,
and the distance between them was 10 cm. We recorded their
sensed light data by holding them together at different heights
simultaneously, ranging from 0∼2 m. We also recorded the
sensed light data from Eve, who was located 20 cm away
from Alice and Bob. As shown in Fig. 2(b), we can see that
Alice and Bob have sensed similar ambient light data, which
verify that strong correlation exists in adjacent positions. Eve’s
sensed light data are obviously different from Alice or Bob.
This is due to the space-varying property of ambient light
distribution. It means that when the distance between two
mobile devices is greater than a certain distance, the ambient
light sensed by the two mobile devices have little correlation
due to non-uniform light distribution.

2) Sensitive to the angle of measuring mobile device: To
validate this property, we have measured light intensity at
different angles in indoor and outdoor environments. In this set
of experiments, we rotated a smartphone from 0◦ to 360◦ along
the short edge of itself, as shown in Fig. 2(c). We recorded the
light intensities at different angles, as shown in Fig. 2(d). We
can see that the light intensity is very low when the rotation
angle is 0◦. This is because the smartphone is back facing
the light sources and only picks up a little light. The light
intensity gradually increases when we increased the rotation
angle. The light intensity is maximal when the rotation angle is
around 180◦. This is because that the light sensor is facing the
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(a) Space-varying of ambient light distribution
in a laboratory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Height (m)

50

80

110

140

170

200

230

260

Li
gh

t i
nt

en
si

ty
 (

Lu
x)

Alice
Bob
Eve

(b) Light intensities sensed in different loca-
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(d) Light intensities sensed by the mobile
device rotated along the short edge and long
edge, respectively.
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(e) Time-varying light intensity in outdoor en-
vironment.
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(f) Rotating and moving the smartphone ran-
domly in indoor scenario.

Fig. 2. The properties of ambient light: space-varying, sensitive to the angle of measuring mobile device, and time-varying.

light source and picks up more direct light from light sources.
However, the light intensity gradually decreases with larger
rotation angle, due to less light received. We also rotated the
smartphone from 0◦ to 360◦ along the long edge of itself, the
measurements show similar results as the case of short edge,
as shown in Fig. 2(d). So the sensed light intensity is verified
to be sensitive to the different rotation angles of the mobile
device. Thus, the mobile device senses different light intensity
at different angles.

3) Time-varying: Based on our measurements and obser-
vations, we find the distribution of light intensity is also time-
varying, with the participation of natural light source and
movement. For example, Fig. 2(e) shows the measurement
results for a fixed point outdoor during 10 seconds. We can
see the light intensity changes as time goes. We need to
point out that the light intensity on a spot in indoor scenario
is relatively stable when the light sources and surrounding
shadowing are not changing. But the motion of devices still
can offer enough varying light data. Fig. 2(f) shows the 500
samples sensed in 10 seconds by rotating and moving the
smartphone randomly in indoor scenario. We can see the
light intensity changes obviously when we rotate and move
the smartphone randomly. When the light is relatively stable,
the randomness of measurements is mainly provided by the
rotation and moving of the mobile devices.

In summary, the results show the three significant properties
of ambient light sensor data, i.e., space-varying, sensitive to
the angle of measuring mobile device, and time-varying.

IV. DESIGN

In this section, we present the challenges, ideas, and design
details of AKEM.

A. Design rationale

The above three properties validate the feasibility of using
sensed light data for key generation. Space-varying, sensitive
to the angle of measuring mobile device, and time-varying can
offer users enough randomness for generating the secret key.
Space-varying and time-varying can help users resist the above
mentioned attacks.

We next try to exploit the ambient light sensor data as
the inherent randomness to generate the common secret key,
constructing a secure channel for the legitimate users. The
main challenges are how to generate similar random patterns
from the ambient light and how to extract a common secret
key from the similar patterns.

For the first challenge, our idea is to move and rotate
the mobile devices along a common trajectory to sense the
ambient light with a same frequency fs, acquiring similar light
intensity data (In our experiments, we fix these devices on a
bracket to guarantee that they are moved and rotated along
the same trajectory. In practice, one legitimate user can stack
the devices up in the same direction and expose their light
sensors, which are on top of screens, and then move them
together). We next consider normalizing these sensor data, and
then exploiting the largest relative change pairs in their sensor
data to be the source of randomness to reduce the influence
of the senor data difference caused by different sensitivity of
light sensors from different manufacturers.
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For the second challenge, we quantize the above mentioned
largest relative change pairs into binary bit streams, separately.
To make the bit streams of legitimate devices identical, the
legitimate users exchange some information for reconciliating
the mismatched bits. To eliminate the risk of secret key
leakage caused by the exchanged information, the devices
conduct privacy amplification operations on their reconciliated
bit sequence to acquire the final secret key.

B. Design details

In the light of our basic idea, the design of AKEM consists
of the following stages, initialization, sensing, quantization,
reconciliation, and privacy amplification. For ease of presen-
tation, we take an example of key generation among three
legitimate users, Alice, Bob, and Calvin.

1) Initialization and sensing: In the initial stage, the le-
gitimate users need to synchronize the start time for sensing
the ambient light. Alice, as an initiator, broadcasts a syn-
chronization signal to other legitimate users. After time t∆,
all the legitimate users start sensing. Here we do not require
very precise synchronization, because AKEM does not simply
quantize the light intensity of start point and is able to tolerate
some minor errors. In our approach, the biggest sampling rate
is 50Hz, and thus it costs 20ms to get a light intensity sample.
The time difference of Alice and Bob start sensing is t∆, which
is theoretically no more than 6.7× 10−7ms when the distance
between Alice and Bob is 20cm (Radio propagation speed
c ≈ 3.0×10−7m/s, and t∆ = d

c ). 6.7×10−7ms is not enough
to get a light intensity sample. The two devices can leverage
the Wi-Fi/Bluetooth module for synchronization. According to
[26], the synchronization error is less than 1ms. Therefore, our
approach can tolerate this minor synchronization error.

The legitimate users start sensing the ambient light with
frequency fs, and store the sensor data locally. To illustrate it
formally, the sensor data are denoted as below:

Mu =
{
mu

1,mu
2, · · · ,mu

i, · · · ,mu
p
}T
, (1)

where u = Alice/Bob/Calvin, denotes different users, mu
i

represents the light intensity recorded by the user.
2) Quantization: Users need to quantize the light sensor

data into secret bit streams. Here we design a method for
them to find the exact source of randomness.

Seeking largest pairs: In this quantization method, we use
the largest relative intensity change in certain intervals to be
the exact source of randomness. As we mentioned above, le-
gitimate users’ light sensors have different sensitivities as they
are made by different manufactures. So it is hard to acquire
a secret key directly from their light sensing. To eliminate
the difference, legitimate users first normalize their sensed
light data, respectively. Since the mobile devices are moved
and rotated together along the same trajectory when sensing
the ambient light, their sensed light data have many identical
relative changes. Then, we exploit the relative changes on light
intensity to design an appropriate randomness seeking method.

As shown in Algorithm 1, the main idea is seeking the
largest relative change pairs in the same intervals of users’
measurements to find the exact source of randomness. The

Algorithm 1: Seeking Largest Changing Pairs
Input: Light sensor measurement array

M =
{
m1,m2, · · · ,mi, · · · ,mn

}
, total length n.

Output: Sensing sequence Q.
1 Sx = max

(
m1,m2, · · · ,mi, · · · ,mn

)
;

2 foreach i=1 to n do
3 si = mi/Sx;

4 for k = 8 : 2 : n do
5 Γ = ∅;
6 foreach j=1 to n-k do
7 Γ = Γ ∪

〈
sj , sj+k

〉
;

8 Find the largest 〈sp, sq〉 in Γ;
9 Take sp, sq as a tuple (sp, sq) and add them into Q;

10 return Q;

algorithm takes an array of ambient light sensor readings as
input and returns a sensing sequence Q. We first normalize the
input and set the first interval length as 8 to make the intervals
long enough. Every iteration is to find the largest relative
intensity change pair in a certain interval. For example, in
an iteration when the interval is τ , we find the largest relative
change pair in{〈

s1
u, s

1+τ
u

〉
,
〈
s2
u, s

2+τ
u

〉
, · · · ,

〈
sn−τu , snu

〉}
, (2)

where 〈x, y〉 denotes the relative change between x and y. In
each iteration, we will find the largest intensity change pair
〈spu, squ〉, then we add them into the sensing sequence Q. To
improve the efficiency, we can acquire enough pairs by altering
the time interval every iteration.

After running the above algorithm, Alice, Bob, and Calvin
acquire the sensing sequence QA, QB , and QC locally, re-
spectively.

Then, these bit sequences need to be transformed into bit
streams. In our experiments, the light data sensed indoor range
from a few tens of Lux to a few hundreds of Lux; the light
data sensed outdoor range from a few tens of Lux to tens of
thousands of Lux, where Lux is the unit of light intensity.
The range of light intensity changes are pretty large and
non-uniform. To reduce the quantization error, an adaptive
quantization method is required.

Inspired by the non-uniform quantization of Pulse Code
Modulation (PCM), we present a new quantization method.
Given that both Android and iOS API use 32 bit to record
the value of light intensity, and the maximum light intensity
in our experiment is lower than 219 Lux, so we quantize
the maximum light intensity into 219 intervals, as listed in
Table I. To trade off between key generation efficiency and
quantization error, we use 8 bits to encode a sensed light
sample. The first 4 bits are segmental code, and the last 4 bits
are internal code. We divide the 219 intervals into 16 segments.
Each segment has a 4-bit segmental code (c1c2c3c4). For each
segment, we divide it into 16 intervals uniformly, and assign
them with a 4-bit code (c5c6c7c8), as listed in Table II.

We have an example for this quantization method. Suppose
the largest light intensity pair in Q is (1.2×10−4, 4.9×10−2),

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 26,2020 at 07:56:13 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3023930, IEEE
Transactions on Wireless Communications

6

TABLE I
SEGMENTAL CODE (c1c2c3c4)

Segment
NO.

Segment
bits

Dynamic
range

Segment
NO.

Segment
bits

Dynamic
range

1 0000 0 ∼ 24 9 1000 211 ∼ 212

2 0001 24 ∼ 25 10 1001 212 ∼ 213

3 0010 25 ∼ 26 11 1010 213 ∼ 214

4 0011 26 ∼ 27 12 1011 214 ∼ 215

5 0100 27 ∼ 28 13 1100 215 ∼ 216

6 0101 28 ∼ 29 14 1101 216 ∼ 217

7 0110 29 ∼ 210 15 1110 217 ∼ 218

8 0111 210 ∼ 211 16 1111 218 ∼ 219

TABLE II
INTERNAL CODE (c5c6c7c8)

Interval Internal bits Interval Internal bits

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

then the code calculated for 1.2 × 10−4 is as follow, 1.2 ×
10−4 × 219 = 62.9, which is in the third segment, so the
c1c2c3c4 is 0010. The interval for third segment is 26−25

16 = 2,
and 62.9 = 32+2×15+0.9, which is in the 16th interval, so
the internal bits (c5c6c7c8) is 1111. Finally, the code calculated
for 1.2× 10−4 is 00101111.

According to this non-uniform quantization method, Alice,
Bob, and Calvin quantize their sensing sequences and then get
the bit stream DA, DB , and DC respectively.

3) Information reconciliation: Once Alice, Bob, and Calvin
get the quantized bit stream DA, DB , and DC , they need
to reconciliate their mismatched bits. To avoid exposing the
bit stream, they cannot compare them directly. Then, we
apply a cryptographic method to address this problem. In
the communication field, error correcting code techniques are
extensively used to reconcile approximate information. So
we are inspired to improve an secure sketch method [27] to
reconcile the mismatched bits.

Improved secure sketch generates a shared information s
about the input X , and s does not expose X , then s and
X̂ , which is close to X on hamming distance, can be used
to recover X . We assume Alice, Bob, and Calvin hold bit
stream DA, DB , and DC (dis(DA, DB)<t, dis(DA, DC)<t,
and dis(DB , DC)<t). Here dis(x, y) is the hamming distance
between x and y. We use a [n, k, 2t+ 1]2 error code (where
n is codeword length, k is message length, and t is error-
correction capability) to correct errors in DB and DC even
though DB and DC may not be in codeword set C [28]. In
information reconciliation, Alice randomly selects a random
codeword c from C and computes s = DA

⊕
c. Then Alice

sends s to Bob and Calvin. After receiving s, Bob and Calvin
compute the shift s from DB and DC , to get ĉ1 = DB

⊕
s

and ĉ2 = DC

⊕
s, respectively. As an example, suppose

|DA| = |DB | = |DC | = 64 bit, dis(DA, DB) = dis(DA,

DC) = 11. In our case, Alice, Bob, and Calvin can employ
a [63, 16, 2× 11 + 1]2-BCH codes to correct error bits. Alice
uses the first 63 bit of DA to compute s and sends it with the
hash value h(DA) to Bob and Calvin. Bob and Calvin correct
error bits in the first 63 bit of sequence DB and DC , then
they use h(DA) as a reference to determine the sequence DA,
respectively.

4) Privacy amplification: Next, we need to eliminate the
risk of secret key leakage due to exchanging information in
the reconciliation phase. We notice that the error correcting
information is public to all of legitimate users and adversaries,
it can be used by adversaries to guess part of the secret key.
Therefore, we need to remove the possible leaked portions of
secret key. To address this problem, privacy amplification is
an effective technique.

Privacy amplification reduces the length of the final secret
sequence to ensure the confidentiality of the secret key. Let
Alice, Bob, and Calvin use universal hash functions, randomly
chosen from well-known hash function families, to get fixed
short length sequence from the original long sequence. Gen-
erally, privacy amplification generates a short sequence with
high entropy rate from a long sequence with low entropy.
Leftover hash lemma [10], [29] is the most popular technique
used for privacy amplification to extract randomness from
imperfect random sources. We implement this method in this
paper.

In the dark environment, there is no light sources offering
the light for ambient light sensing, and it limits the applicabil-
ity of AKEM. To address this problem, we consider using the
flashlights of the mobile devices to provide lights for AKEM.
In our experiments, we can turn on one device’s flashlight to
increase the intensity of ambient light. We can easily know
the produced light distribution also have the properties of
space-varying, sensitive to the angle of measuring mobile
device. These properties are also validated by the extensive
measurements.

V. SECURITY ANALYSIS

In this section, we analyze the security performance of
AKEM under the above mentioned attacks.

A. Against eavesdropping attack

Under the eavesdropping attack, the information exchanged
by legitimate users is transmitted through the public wireless
channel, which can be eavesdropped by the adversary Eve. We
analyse what information can be obtained by Eve. The first
interaction among legitimate users is in the initial stage, when
the initiator Alice sends a notification signal to other legitimate
users for synchronization and then receives feedback signals
from other legitimate users. The second interaction is in
the information reconciliation stage, when Alice sends s to
other legitimate users. The transmitted information s includes
the XOR result of DA and a codeword c. The number of
codewords in C is 263 in our case. It is very hard for Eve to
guess the secret key from s if the length of DA is long since
the computation overhead grows exponentially. In addition,
privacy amplification technique prevents information leakage
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Fig. 3. Sensed light data are irreproducible. The first three volunteers as
legitimate users, Alice, Bob, and Calvin, sense the ambient light along
the same trajectory. After they finished the key generation steps, the last
volunteer, as adversary Eve, moves to the same position and performs the
same operations to sense the ambient light twice. But he cannot get the similar
light data of legitimate users.

from s. Therefore, Eve cannot guess any information about the
secret key by eavesdropping the interactions among legitimate
users.

B. Against detecting-simultaneously attack

Under the detecting-simultaneously attack, the legitimate
users are located in proximity, and the adversary Eve is located
out of the proximity of legitimate users, as shown in Fig. 1.
Here the adversary Eve cannot get close to these legitimate
users, who are sensing the ambient light intensity. But Eve can
use the synchronization signal as an indicator to start sensing
ambient light. However, he still cannot sense similar light data
as the legitimate users due to the properties of space-varying.
In addition, Eve cannot rotate or move his mobile device along
exactly the same trajectory as the legitimate users. Thus, Eve
cannot generate the same secret key as legitimate users from
his ambient light sensor data. Thus, AKEM can resist the
detecting-simultaneously attack.

C. Against repeating-afterwards attack

Under the repeating-afterwards attack, after the legitimate
users finish key generation procedure, Eve can move to the
same location to repeat the same operations as legitimate
users performed, trying to generate the same secret key. We
conduct experiments to test if Eve can generate the same
secret key. We invite four volunteers to play as Alice, Bob,
Calvin, and Eve. Everyone holds a mobile device, equipped
with an ambient light sensor. The mobile devices of Alice,
Bob, and Calvin are moved and rotated together to sense the
ambient light, and the sensed light data are shown in Fig. 3.
When these legitimate users finished the key generation, Eve
move to the same position to sense the ambient light twice by
imitating the movements of legitimate users, and the sensed
light data are also shown in Fig. 3. We can see the obvious
difference between the light data of Eve and the legitimate
users. That is mainly because the distribution of light intensity

is time-varying, Eve cannot acquire similar light sensor data to
reproduce the same secret key. In addition, Eve cannot move
or rotate the mobile device along exactly the same trajectory
or at exactly the same speed as the legitimate users. In fact, the
legitimate users can use more complex rotating and moving
trajectory on purpose to better resist the possible attacks.

VI. EVALUATION

In this section, we present the prototype implementation,
experiment setup, and the performance results of AKEM.

A. Implementation

We conduct extensive experiments in different scenarios
with four volunteers, named as Alice, Bob, Calvin, and Eve.
The first three of them are the legitimate users, and the last
one is the adversary. We implement AKEM prototype on
several kinds of mobile devices, i.e., Nexus 7, MEIZU MX
6, Xiaomi 3, and all of them are equipped with an ambient
light sensor. The type of the ambient light sensor on Google
Nexus 7 is AL3006, and its resolution is 1.0 Lux [30]. The
type of the light sensor on Xiaomi 3 is ISL29009IROZ-T7A,
and its resolution is 0.3 Lux [31]. The type of the light sensor
on MEIZU MX 6 is APDS-9922, and its resolution is 1.0
Lux [32]. The three legitimate mobile devices are fixed on a
bracket, and the default distance between any two of them is
5 cm. They are rotated and moved along the same trajectory,
and the default trajectory is “8”. We conduct our experiments
in both indoor and outdoor environments.

We call the Android API for sensing the ambient light.
The parameters of light sensor are configured by setting
the Sensor.TYPE LIGHT FIELD. In general commercial An-
droid devices, the sensing frequency fs can be set as one
of the following values, i.e., 50 Hz, 16.7 Hz, and 5 Hz.
When the sensing frequency is set, the sensor manager will
receive periodic SensorEvent from the light sensor, and the
SensorEvent includes the light sensing measurement. Alice
uses Bluetooth to broadcast a synchronization signal to other
legitimate users to start sensing the ambient light. Once the
ambient light sensing is finished, the system will call the
function seeking largest changepair( ) automatically to find
the exact source of randomness and return a sensing sequence.
Then the sensing sequence is encoded into a bit stream by
our non-uniform quantization method. Next, the legitimate
users start to use the improved secure sketch method to
reconciliate their mismatched bits. Then, they perform the
privacy amplification operations to acquire the final secret key.

B. Setup and metrics

We conduct a variety of experiments indoor and outdoor.
Our indoor experiment environment is a 10× 14 m2 lab; the
outdoor experiment environment is a big lawn in front of our
office building. Additionally, the mobile devices are fixed on
a bracket, and the distance between them is adjustable. Then,
the mobile devices can be moved and rotated in the same
trajectory to collect the ambient light sensing measurements.

To measure the system performance, we have the following
metrics:
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Fig. 4. Secret bit rate with different distances.
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Fig. 5. Bit mismatch ratio with different distances.
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Fig. 7. Bit mismatch ratio with different trajectories.

• Secret Bit Rate (SBR): SBR is the number of generated
secret bits in a second. SBR can indicate the time needed
for key generation and system efficiency.

• Bit Mismatch Ratio (BMR): BMR is the ratio of mis-
matched bits between all quantized bits of two mobile
devices. BMR can indicate the system robustness. The
smaller BMR, the higher robustness of key generation.

• Randomness and Entropy (RE): RE can evaluate the
quality of the generated key. We use a widely used
randomness measurement, NIST test, to measure the
randomness of the generated key. We also compute the
entropy of the generated secret key. The entropy can
measure the uncertainty of the generated keys. The higher
the entropy, the better the quality of the generated secret
key.

C. The influence of distance

We change the distance among legitimate users to study
how the distance influences the performance of AKEM. We
set the sensing frequency as 50 Hz and the trajectory as “3”.

Fig. 4 shows the secret bit generation rate in different
distances, and the indoor and outdoor environment are labeled
as “A” and “B”, respectively. We find that the secret bit
generation rate is greater than 200 bits/sec when the distance
ranges from 0 to 20 cm. For comparison, we present the
secret bit generation rate of the state-of-the-art key generation
methods, i.e., TDS [23] and MAGIK [33]. We can see the
secret generation rate of AKEM is obviously greater than that

of TDS and MAGIK. The secret bit generation rate of AKEM
decreases dramatically when the distance is greater than 20
cm. The main reason is that the ambient light distribution is
space-varying. We also find the secret bit generation rate in
indoor environment is higher than that in outdoor environment.
The reason is that the ambient light intensity indoor changes
more frequently and provides more randomness due to more
factors, such as the shadowing of furniture, appliance, moving
staffs, etc., affecting the ambient light.

Fig. 5 shows the bit mismatch ratio versus different dis-
tances in both indoor and outdoor environments. We find that
the bit mismatch ratio increases as distance grows. The bit
mismatched ratio of AKEM is higher than that of MAGIK, but
lower than that of TDS when the distance ranges from 7 cm
to 12 cm. But when the distance increases, the bit mismatched
ratio of both TDS and MAGIK are greater than that of AKEM.
We can see the mismatch ratio of AKEM is around 0.5 when
the distance is around 27 cm. Therefore, AKEM outperforms
TDS and AKEM on the bit mismatch ratio when the distance
ranges from 12 cm to 27 cm.

D. The influence of sensing frequency

We change the sensing frequency to study how it influences
the system performance. The results are shown in Fig. 6.
We can see that the mismatched bit ratio with high sensing
frequency, i.e., 50 Hz, is lower than that with low sensing
frequencies, i.e., 5 Hz and 16.7 Hz. The reason is that the
collected light data under higher frequency is more sensitive

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 26,2020 at 07:56:13 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3023930, IEEE
Transactions on Wireless Communications

9

0 3 6 9 12 15 18 21 24 27 30
Distance (cm) among legitimate users

0
50

100
150
200
250
300
350
400

S
ec

re
t b

it 
ra

te
 (

bi
ts

/s
ec

)

AKEM(A)
AKEM(B)

Fig. 8. Secret bit rate with different distances in
the dark environment.
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in the dark environment.
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Fig. 10. Conditional min-entropy of generated
keys.

to subtle difference, and can capture more peaks, while the
collected light data under lower frequency miss many impor-
tant peaks, which cause a higher mismatch ratio. However,
this situation changes as distance grows. The reason is that
the difference of light data sensed by different users increases
as distance grows, and the collected light data with high
frequency can record more misleading peaks, which cause a
higher mismatch ratio.

E. The influence of moving trajectory
To study how moving trajectory influences the performance

of AKEM, we collect light sensor data indoor and outdoor
under different trajectories, i.e., “0”, “1”, “3”, and “8”. As
shown in Fig. 7, we can see that the complexity of moving
trajectory influences the mismatch ratio obviously. The more
complicated the moving trajectory, the lower the bit mismatch
ratio. The reason is that we can collect more diverse light
sensor data patterns when moving and rotating along more
complicated trajectories, and we can capture more different
peaks to reduce the bit mismatch ratio. Besides, the bit
mismatch ratio indoor is lower than that outdoor with the
same sensing frequency. The reason is also that the ambient
light data vary more rapidly indoor, and we can collect more
different peaks to reduce the mismatched bit ratio.

F. Performance of AKEM in the dark environment
As mentioned above, we use the flashlights of mobile

devices to be the light sources in the dark environment. Then,
we also evaluate the performance of AKEM in the dark
environment. Fig. 8 shows the secret bit rate of AKEM with
different distances in the dark environment. We can find that
the secret bit rate is more than 200 bit/s when the distance is
shorter than 10 cm, and the secret bit rate also decreases with
growing distance. Fig. 9 shows the bit mismatch ratio with
different distances in the dark environment. We can find that
the bit mismatch ratio of both indoor and outdoor approach
0.5 when the distance is larger than 18 cm. The results show
that AKEM also can achieve a high bit rate in the dark
environment.

G. Randomness of generated keys
We test the randomness of the secret key generated by

AKEM. For experiment setting, the distance among legitimate

TABLE III
NIST STATISTICAL TEST RESULTS.

Test Indoor Outdoor

Monobit Frequency 0.659 0.743
Longest Run of 1s 0.640 0.644
FFT 0.507 0.818
Approximate Entropy 0.834 0.757
Cumulative Sums (Fwd) 0.532 0.623
Cumulative Sums (Rev) 0.818 0.824
Block Frequency 0.681 0.760
Runs 0.768 0.842
Serial 0.520 0.681

0.644 0.727

users ranges from 0 ∼ 20 cm and the sensing frequency is 50
Hz. Previous efforts used NIST test to measure the randomness
of generated bits [23], [34]–[37]. Here we also utilize NIST
test to measure the generated 300 secret sequences under
different distances in both indoor and outdoor environments,
and compute their average p-values for 8 types of tests, listed
in Table III. The sequence is marked as random if all p-values
are greater than 0.05. We can see the keys generated by AKEM
pass all types of tests. Thus, the generated keys have good
randomness.

H. Conditional min-entropy of generated keys

To evaluate the security of generated secret keys under
the eavesdropping of Eve, we compute their conditional min-
entropy H̃∞(X/Y ), which is defined as

H̃∞(X/Y )
def
= −log(Ey←Y [maxxPr[X = x|Y = y]]) (3)

in [38], [39]. Eve is located 20cm away from legitimate
users in indoor and outdoor environments. Conditional min-
entropy is used by many previous efforts to measure the
knowledge of the adversary to the secret key [34], [35], [40],
[41]. For simplifying the computation of conditional min-
entropy, we set the lengths of variable X and variable Y
as 1. We analyze the bits at the corresponding position of
these two bit strings, and conduct the analysis on all pairs
of bit strings generated by Alice and Eve to get the average
conditional probability Pr[X = x|Y = y] and the expectation
Ey←Y [maxxPr[X = x|Y = y]] to compute the average
min-entropy. Fig. 10 shows the (average-case) conditional
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min-entropy of generated keys indoor and outdoor. We can
see the conditional min-entropy indoor and outdoor are at
least greater than 0.83, and some of them approximate 0.95.
Thus, the generated keys show satisfactory security against the
eavesdropping of adversary Eve.

I. Comparisons with existing key generation approaches

We compare AKEM with the state-of-the-art key generation
approaches, i.e., MAGIK [33], TDS [23], KEEP [22], and
ASBG [10]. MAGIK extracts secret key from dynamic ge-
omagnetic field. TDS and KEEP use the fine-grained Channel
State Information (CSI) recorded by CSI tool to extract secret
key. ASBG extracts secret key from wireless signal strength
in real environments. To align the baseline of comparison, we
set appropriate parameters for these approaches. For MAGIK,
we set the distance between legitimate users as 10 cm, and
the sampling frequency as 50 Hz. For TDS, we set the block
size β as 6, and the distance as 4 cm. For KEEP and ASBG,
we set α and the fragment size as 0.35 and 50, respectively,
to ensure a low bit mismatched ratio. For AKEM, we also set
the distance as 10 cm, and the sensing frequency as 50 Hz.
We compare them indoor and outdoor.

We compare the secret bit generation rate of different
approaches in Fig. 11. It shows that AKEM has an obvious
higher key generation rate than other approaches.

We also compare the entropy of different approaches in
Fig. 12. The entropy can represent the randomness of the
generated keys from the perspective of uncertainty. We can
see that AKEM has pretty high entropy.

In summary, AKEM has a high key generation rate and
great performance on the entropy.

VII. DISCUSSION

To facilitate the comparison of AKEM under different
conditions, we fix the mobile devices on a bracket in the
experiments to conveniently adjust the distance among the
mobile devices and move them along the same trajectory. In
practice, to generate the secret key, the users hold their own
devices and move them together to sense the ambient light.
Due to the differences in users’ heights and moving pattern,
their bit mismatch ratio may be higher than the case when the
devices are fixed on the bracket. Thus, they may have a lower

key generation efficiency in practice. To address this problem,
we assume that one of the legitimate users holds all the mobile
devices and moves the mobile devices together to sense the
ambient light. Hence, all mobile devices are moved along the
same trajectory, and the distances among them are almost 0
cm. In this scenario, AKEM can perform best. However, the
prerequisite is that the users must trust each other and be
willing to give their devices to another user. In the future work,
we will study how to reduce the bit mismatch ratio without
this prerequisite.

In our method, the participation of natural light sources
or movement is necessary to resist against powerful attacks.
Here we mainly consider a scenario, the attacker can be
the maintenance or security personnel, who can control the
lights and then tries to predict the secret key generated by
legitimate users. It is obvious that the key generation is easily
attacked when the distribution of light intensity is controlled.
The participation of natural light source or movement makes
the distribution of light intensity time-varying. Therefore, the
attacker cannot control the light intensity sensed by users with
the participation of natural light source or movement.

VIII. RELATED WORK

We briefly review related works in this section.
There are many works for secret key generation. Hershey

et al. first proposed to utilize the communication channel in-
formation to generate secret keys [13]. Subsequently, channel
measurement based works have emerged in large numbers [9],
[10], [14], [19], [42]–[54], including Arrive of Angle (AoA)
[14], phase [42], [43], Received Signal Strength (RSS), etc [9],
[10], [19], [44]. Channel State Information (CSI) and Channel
Impulse Response (CIR) are also exploited as quantization
signal sources [20]–[23], [55]–[58]. Xi et al. used the CSI to
achieve key agreement among mobile devices [23]. However,
they require the mobile devices provide the API for detailed
channel measurement. Some researchers used acceleration and
geomagnetic data of shaking process to generate secret keys
[33], [59], [60]. More specifically, Mayrhofer et al. used
acceleration data of shaking process for secure device pairing
and key generation [59], but they have limited applicability to
practical scenarios due to low key generation rate.

There are some works using ambient light to authenticate
legitimate users. Liu et al. used ambient light and sound for
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secure pairing [61]. LightTouch exploits visible light commu-
nication to secure RF channels [62]. But they still rely on
Diffie-Hellman protocol, not the randomness from physical
layer, to generate the secret key.

IX. CONCLUSION

In this paper, we have studied the problem of efficient secret
key generation on commercial off-the-shelf mobile device.
We have proposed a fast and robust key generation approach
AKEM, which uses ambient light sensor data to generate
secret key, securing wireless communication among legitimate
users. We have carefully studied and validated the feasibility
of using ambient light sensor data for key generation through
extensive experiments. Compared with existing solutions for
key establishment, AKEM mainly has two advantages: First,
AKEM has a faster key generation rate. To generate a 256-bit
cryptographic key, AKEM only needs one second; Second,
AKEM can be implemented on commodity mobile devices
without extra hardware. We also have implemented AKEM
on smartphones and tablets. The results of experiments show
the high efficiency and good robustness of AKEM.

REFERENCES

[1] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014.

[2] L. Militano, G. Araniti, M. Condoluci, I. Farris, and A. Iera, “Device-to-
device communications for 5g internet of things,” EAI Endorsed Trans.
Internet Things, vol. 1, no. 1, pp. 1–15, 2015.

[3] P. Gandotra and R. K. Jha, “Device-to-device communication in cellular
networks: A survey,” Journal of Network and Computer Applications,
vol. 71, pp. 99–117, 2016.

[4] Y. Zhang, E. Pan, L. Song, W. Saad, Z. Dawy, and Z. Han, “Social
network aware device-to-device communication in wireless networks,”
IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 177–
190, 2014.

[5] M. Haris, H. Haddadi, and P. Hui, “Privacy leakage in mobile computing:
Tools, methods, and characteristics,” arXiv preprint arXiv:1410.4978,
2014.

[6] B. Krishnamurthy and C. E. Wills, “Privacy leakage in mobile online
social networks,” in Proceedings of the Wonference on Online social
networks, 2010.

[7] P. Gandotra, R. K. Jha, and S. Jain, “A survey on device-to-device (d2d)
communication: Architecture and security issues,” Journal of Network
and Computer Applications, vol. 78, pp. 9–29, 2017.

[8] S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam,
“Proximate: proximity-based secure pairing using ambient wireless
signals,” in Proceedings of the ACM Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2011.

[9] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, “Radio-
telepathy: extracting a secret key from an unauthenticated wireless
channel,” in Proceedings of the Annual International Conference on
Mobile Computing and Networking (MobiCom), 2008.

[10] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, and
S. V. Krishnamurthy, “On the effectiveness of secret key extraction
from wireless signal strength in real environments,” in Proceedings of
the ACM Annual International Conference on Mobile Computing and
Networking (MobiCom), 2009.

[11] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[12] J.-F. Raymond and A. Stiglic, “Security issues in the diffie-hellman key
agreement protocol,” IEEE Transactions on Information Theory, vol. 22,
pp. 1–17, 2000.

[13] J. E. Hershey, A. A. Hassan, and R. Yarlagadda, “Unconventional
cryptographic keying variable management,” IEEE Transactions on
Communications, vol. 43, no. 1, pp. 3–6, 1995.

[14] T. Aono, K. Higuchi, M. Taromaru, T. Ohira, and H. Sasaoka, “Wireless
secret key generation exploiting the reactance-domain scalar response of
multipath fading channels: Rssi interleaving scheme,” in Proceedings of
IEEE European Microwave Association (EuMA), 2005.

[15] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener, “Robust key
generation from signal envelopes in wireless networks,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2007.

[16] S. Gollakota and D. Katabi, “Physical layer wireless security made fast
and channel independent,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2011.

[17] M. Miettinen, N. Asokan, T. D. Nguyen, A.-R. Sadeghi, and M. Sobhani,
“Context-based zero-interaction pairing and key evolution for advanced
personal devices,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

[18] H. Liu, J. Yang, Y. Wang, and Y. Chen, “Collaborative secret key extrac-
tion leveraging received signal strength in mobile wireless networks,”
in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), 2012.

[19] Z. Li, Q. Pei, I. Markwood, Y. Liu, and H. Zhu, “Secret key estab-
lishment via rss trajectory matching between wearable devices,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 3, pp.
802–817, 2018.

[20] Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity
in secret key generation from multipath fading randomness,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 5, pp.
1484–1497, 2012.

[21] H. Liu, Y. Wang, J. Yang, and Y. Chen, “Fast and practical secret key
extraction by exploiting channel response,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
2013.

[22] W. Xi, X.-Y. Li, C. Qian, J. Han, S. Tang, J. Zhao, and K. Zhao,
“Keep: Fast secret key extraction protocol for d2d communication,”
in Proceedings of IEEE/ACM International Symposium on Quality of
Service (IWQoS), 2014.

[23] W. Xi, C. Qian, J. Han, K. Zhao, S. Zhong, X.-Y. Li, and J. Zhao,
“Instant and robust authentication and key agreement among mobile
devices,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[24] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11 n traces with channel state information,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 1, pp. 53–53, 2011.

[25] Y. Lu, F. Wu, S. Tang, L. Kong, and G. Chen, “Free: a fast and robust
key extraction mechanism via inaudible acoustic signal,” in Proceedings
of the ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2019, pp. 311–320.

[26] M. Ibrahim, H. Liu, M. Jawahar, V. Nguyen, M. Gruteser, R. Howard,
B. Yu, and F. Bai, “Verification: Accuracy evaluation of wifi fine
time measurements on an open platform,” in Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking
(MobiCom), 2018, pp. 417–427.

[27] Q. Wang, H. Su, K. Ren, and K. Kim, “Fast and scalable secret key
generation exploiting channel phase randomness in wireless networks,”
in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), 2011.

[28] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM journal on computing, vol. 38, no. 1, pp. 97–139, 2008.

[29] S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K.
Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction
from wireless signal strength in real environments,” IEEE Transactions
on Mobile Computing, vol. 12, no. 5, pp. 917–930, 2013.

[30] D. I. Corporation. (2012, Feb.) Al3006 datasheet. [Online]. Available:
https://wenku.baidu.com/view/53adfe12866fb84ae45c8dd8.html

[31] Intersil. (2008) Isl29009 datasheet. [Online].
Available: http://static6.arrow.com/aropdfconversion/
23d75596f5467832449ac17191fd9e3544662abb/isl29009.pdf

[32] Broadcom. (2016, Aug.) Apds-9922-001 datasheet.
[Online]. Available: https://www.mouser.com/datasheet/2/678/
APDS-9922-001-DS102-1501431.pdf

[33] F. Qiu, Z. He, L. Kong, and F. Wu, “Magik: An efficient key extraction
mechanism based on dynamic geomagnetic field,” in Proceedings of the
IEEE International Conference on Computer Communications (INFO-
COM), 2017.

[34] C. Zenger, J. Zimmer, J.-F. Posielek, and C. Paar, “On-line entropy
estimation for secure information reconciliation,” in Proceedings of
the 12th EAI International Conference on Mobile and Ubiquitous

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 26,2020 at 07:56:13 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3023930, IEEE
Transactions on Wireless Communications

12

Systems: Computing, Networking and Services on 12th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services (MobiQuitous), 2015, pp. 254–259.

[35] C. Zenger, J. Zimmer, and C. Paar, “Security analysis of quantization
schemes for channel-based key extraction,” in proceedings of the 12th
EAI International Conference on Mobile and Ubiquitous Systems: Com-
puting, Networking and Services on 12th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Ser-
vices (MobiQuitous), 2015, pp. 267–272.

[36] K. Moara-Nkwe, Q. Shi, G. M. Lee, and M. H. Eiza, “A novel physical
layer secure key generation and refreshment scheme for wireless sensor
networks,” IEEE Access, vol. 6, pp. 11 374–11 387, 2018.

[37] A. Soni, R. Upadhyay, and A. Kumar, “Wireless physical layer key
generation with improved bit disagreement for the internet of things
using moving window averaging,” Physical Communication, vol. 33,
pp. 249–258, 2019.

[38] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in International
conference on the theory and applications of cryptographic techniques.
Springer, 2004, pp. 523–540.

[39] M. Edman, A. Kiayias, Q. Tang, and B. Yener, “On the security of key
extraction from measuring physical quantities,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 8, pp. 1796–1806, 2016.

[40] C. T. Zenger, M. Pietersz, J. Zimmer, J.-F. Posielek, T. Lenze, and
C. Paar, “Authenticated key establishment for low-resource devices
exploiting correlated random channels,” Computer Networks, vol. 109,
pp. 105–123, 2016.

[41] C. Chen and H. Yang, “Shared secret key generation from signal fading
in a turbulent optical wireless channel using common-transverse-spatial-
mode coupling,” Optics express, vol. 26, no. 13, pp. 16 422–16 441,
2018.

[42] A. Sayeed and A. Perrig, “Secure wireless communications: Secret keys
through multipath,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2008.

[43] Q. Wang, K. Xu, and K. Ren, “Cooperative secret key generation from
phase estimation in narrowband fading channels,” IEEE Journal on
selected areas in communications, vol. 30, no. 9, pp. 1666–1674, 2012.

[44] S. T. Ali, V. Sivaraman, and D. Ostry, “Eliminating reconciliation cost in
secret key generation for body-worn health monitoring devices,” IEEE
Transactions on Mobile Computing, vol. 13, no. 12, pp. 2763–2776,
2014.

[45] J. Zhang, S. K. Kasera, and N. Patwari, “Mobility assisted secret key
generation using wireless link signatures,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
2010.

[46] A. Ambekar, M. Hassan, and H. D. Schotten, “Improving channel
reciprocity for effective key management systems,” in Proceedings of the
International Symposium on Signals, Systems, and Electronics (ISSSE),
2012.

[47] D. Chen, Z. Qin, X. Mao, P. Yang, Z. Qin, and R. Wang, “Smokegrenade:
An efficient key generation protocol with artificial interference,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11, pp.
1731–1745, 2013.

[48] X. Zhu, F. Xu, E. Novak, C. C. Tan, Q. Li, and G. Chen, “Extracting
secret key from wireless link dynamics in vehicular environments,”
in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), 2013.

[49] X. He, H. Dai, Y. Huang, D. Wang, W. Shen, and P. Ning, “The security
of link signature: A view from channel models,” in Proceedings of
the IEEE Conference on Communications and Network Security (CNS),
2014.

[50] S. Sun, Y. Wu, B. S. Lim, and H. D. Nguyen, “A high bit-rate shared
key generator with time-frequency features of wireless channels,” in
Proceedings of the IEEE Global Telecommunications (GLOBECOM),
2017.

[51] X. Wang, Y. Hou, X. Huang, D. Li, X. Tao, and J. Xu, “Security
analysis of key extraction from physical measurements with multiple
adversaries,” in 2018 IEEE International Conference on Communica-
tions Workshops (ICC Workshops), 2018.

[52] X. Li, M. Wang, H. Wang, Y. Yu, and C. Qian, “Toward secure
and efficient communication for the internet of things,” IEEE/ACM
Transactions on Networking, 2019.

[53] W. Xu, S. Jha, and W. Hu, “Exploring the feasibility of physical layer
key generation for lorawan,” in Proceedings of the IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), 2018.

[54] M. Cao, D. Chen, Z. Yuan, Z. Qin, and C. Lou, “A lightweight key
distribution scheme for secure d2d communication,” in Proceedings of
the International Conference on Selected Topics in Mobile and Wireless
Networking (MoWNeT), 2018.

[55] H. Koorapaty, A. A. Hassan, and S. Chennakeshu, “Secure information
transmission for mobile radio,” IEEE Communications Letters, vol. 4,
no. 2, pp. 52–55, 2000.

[56] J. Zhang, A. Marshall, R. Woods, and T. Q. Duong, “Secure key
generation from ofdm subcarriers’ channel responses,” in Proceedings
of the IEEE Global Telecommunications (GLOBECOM), 2014.

[57] F. Marino, E. Paolini, and M. Chiani, “Secret key extraction from a uwb
channel: Analysis in a real environment,” in Proceedings of the IEEE
International Conference on Ubiquitous Wireless Broadband (ICUWB),
2014.

[58] J. Zhang, R. Woods, A. Marshall, and T. Q. Duong, “Verification of
key generation from individual ofdm subcarrier’s channel response,” in
Proceedings of the IEEE Global Telecommunications (GLOBECOM),
2015.

[59] D. Bichler, G. Stromberg, M. Huemer, and M. Löw, “Key generation
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